Acetylcholine: a novel regulator of airway smooth muscle remodelling?
نویسندگان
چکیده
Increased airway smooth muscle mass is a pathological feature that asthma and chronic obstructive pulmonary disease (COPD) have in common. This increase has gained renewed interest in view of recent developments showing that airway smooth muscle, instead of solely being a contractile partner, is capable of interacting dynamically with its environment, especially under inflammatory conditions. Airway smooth muscle cells are able to proliferate, to migrate, and to secrete chemokines, cytokines, extracellular matrix proteins and growth factors, and most importantly, to adapt to these functions by changing its phenotype from contractile to proliferative/synthetic. Conversely, switching to a (hyper)contractile phenotype may also occur. A vast number of inflammatory stimuli regulate these functions and exert their effects via excitatory G(q) or G(i)-coupled receptors. Since acetylcholine activates muscarinic M(2) and M(3) receptors in the airway smooth muscle cell membrane, which are coupled to G(i) and G(q) proteins, respectively, and since acetylcholine release may be enhanced in airway inflammation, a pathophysiological role of acetylcholine related to the above processes and exceeding contraction could be envisaged. In this review, evidence in favour of this hypothesis, based on recent data that show a role for muscarinic receptors in modulating airway smooth muscle proliferation, contractility and contractile protein expression is discussed. Based on these findings, we postulate that endogenous acetylcholine contributes to airway remodeling in asthma and COPD.
منابع مشابه
Cholinergic Regulation of Airway Inflammation and Remodelling
Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and ti...
متن کاملInhibition of allergen-induced airway remodelling by tiotropium and budesonide: a comparison.
Chronic inflammation in asthma and chronic obstructive pulmonary disease drives pathological structural remodelling of the airways. Using tiotropium bromide, acetylcholine was recently identified as playing a major regulatory role in airway smooth muscle remodelling in a guinea pig model of ongoing allergic asthma. The aim of the present study was to investigate other aspects of airway remodell...
متن کاملTreating asthma means treating airway smooth muscle cells.
Asthma is characterised by airway hyperresponsiveness, airway inflammation and airway remodelling. Airway smooth muscle cells are known to be the main effector cells of airway narrowing. In the present paper, studies will be discussed that have led to a novel view of the role of airway smooth muscle in the pathogenesis of asthma in which airway hyperresponsiveness, remodelling and inflammation ...
متن کاملMuscarinic M3 receptor stimulation increases cigarette smoke-induced IL-8 secretion by human airway smooth muscle cells.
Acetylcholine is the primary parasympathetic neurotransmitter in the airways and is known to cause bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine also regulates aspects of remodelling and inflammation through its action on muscarinic receptors. In the present study, we aimed to determine the effects of muscarinic receptor stimulation on cytokine production b...
متن کاملMUSCARINIC RECEPTOR SUBTYPES IN SMOOTH MUSCLE FROM THE BODY OF HUMAN STOMACH
Up to date, there are four pharmacologically characterized subtypes of muscarinic receptors (M1, M2, M3 and M4). In our study we have investigated muscarinic receptor subtypes in smooth muscle layers of human stomach. Isolated preparations of longitudinal and circular muscle layers from human stomach were used. Acetylcholine, bethanechol, carbachol, pilocarpine and AHR -602 produced concen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of pharmacology
دوره 500 1-3 شماره
صفحات -
تاریخ انتشار 2004